SPIN(9): OCTONIONIC GEOMETRY, SPHERES AND EXCEPTIONAL SYMMETRIC SPACES

Poster by

Maurizio Parton, Università di Chieti-Pescara
parton@unich.it

Paolo Piccinni, Università di Roma “La Sapienza”
piccinni@mat.uniromal.it
Octonions $\mathbb{O} = \mathbb{R}^8$, related with G_2, Spin(7) geometries in dimension 7, 8, appear also in higher dimensional geometries, starting with 16. In this respect the group

$$\text{Spin}(9) \subset \text{SO}(16)$$

plays a special role. In the following, we present the reader with some analogies between Spin(9) structures and quaternionic Hermitian structures, which will eventually lead us to a description of the Spin(9) geometry in \mathbb{R}^{16}.

Analogy 1

In the 1955 Berger list of possible holonomy groups for Riemannian manifolds, the two holonomy choices implying the Einstein curvature property are:

- Spin(9) in dim = 16
- Sp(n) · Sp(1) in dim = 4n

Analogy 2

The Spin(9) invariant 8-form and the quaternionic invariant 4-form are given by:

$$\Phi_{\text{Spin}(9)} = \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl \in \Lambda^8(\mathbb{R}^{16})$$

$$\Phi_{\text{Sp}(n) \cdot \text{Sp}(1)} = \int_{\mathbb{H}P^{n-1}} p_l^* \nu_l \, dl \in \Lambda^4(\mathbb{R}^{4n})$$

[$\nu_l = \text{volume form on octonionic lines } l \subset \mathbb{O}^2$, $p_l : \mathbb{O}^2 \to l$ projection, integral taken over $\mathbb{O}P^1 = S^8$ of all the $l \subset \mathbb{O}^2$, and in a similar way for $\Phi_{\text{Sp}(n) \cdot \text{Sp}(1)}$].

Analogy 3

Spin(9) and Sp(n) · Sp(1) are the symmetry groups of the Hopf fibrations

$$S^{15} \longrightarrow \mathbb{O}P^1$$

$$S^{4n-1} \longrightarrow \mathbb{H}P^{n-1}$$

With all of this in mind, Friedrich’s approach [FrHo1] for Spin(9)-structures as an analogue with (almost) quaternionic structures seems very natural. Similarly to the way a Sp(n) · Sp(1)-structure on M^{4n} corresponds to a subbundle $V^3 \subset \text{End}(TM)$:

Definition

A Spin(9)-structure on a Riemannian manifold M^{16} is a vector subbundle $V^9 \subset \text{End}(TM)$, locally spanned by $\{I_1, \ldots, I_9\}$ satisfying:

$$I_2^2 = \text{Id}, \quad I_\alpha^2 = I_\alpha, \quad I_\alpha \circ I_\beta = -I_\beta \circ I_\alpha.$$
Thus, understanding the local Spin(9) geometry means understanding $V^9 \subset \text{End}(\mathbb{R}^{16})$.

A simple choice

Denote by:

- R_x the octonionic right multiplication for $x \in \mathbb{O}$
- i, j, k, e, f, g, h the canonical basis of $\text{Im} \mathbb{O}$

$I_1 = \begin{pmatrix} 0 & \text{Id} & 0 \\ \text{Id} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, I_2 = \begin{pmatrix} 0 & -R_i & 0 \\ R_i & 0 & 0 \\ 0 & 0 & \text{Id} \end{pmatrix}, \ldots, I_8 = \begin{pmatrix} 0 & -R_h & 0 \\ R_h & 0 & 0 \\ 0 & 0 & \text{Id} \end{pmatrix}, I_9 = \begin{pmatrix} \text{Id} & 0 & 0 \\ 0 & 0 & -\text{Id} \\ 0 & \text{Id} & 0 \end{pmatrix}$.

Using I_1, \ldots, I_9 one can explicitly describe the Spin(9) geometry of \mathbb{R}^{16}. In particular, one can explicitly describe the irreducible decomposition of $\Lambda^2 \mathbb{R}^{16}$ under Spin(9).

Irreducible decomposition

- $\Lambda^2 \mathbb{R}^{16} = \Lambda_{36}^2 \oplus \Lambda_{84}^2 = \text{spin}(9) \oplus \Lambda_{84}^2$
- $\text{spin}(9) = \text{Span}\{I_\alpha \circ I_\beta\}_{1 \leq \alpha < \beta \leq 8}$
- $\Lambda_{84}^2 = \text{Span}\{I_\alpha \circ I_\beta \circ I_\gamma\}_{1 \leq \alpha < \beta < \gamma \leq 9}$

The generators $J_{\alpha\beta} = I_\alpha \circ I_\beta$ of $\text{spin}(9)$ can be divided into the following 3 families:

- $A = \{J_{\alpha\beta}\}_{2 \leq \alpha < \beta \leq 8}$
- $B = \{J_{1\beta}\}_{2 \leq \beta \leq 8}$
- $C = \{J_{\alpha 9}\}_{1 \leq \alpha \leq 8}$

Remark 1

A, B, C give a description of the different geometries comprised in $\text{spin}(9)$:

- family A span the diagonal $\text{spin}(7)_\Delta \subset \text{spin}(9)$
- families A, B span $\text{spin}(8) \subset \text{spin}(9)$
- families A, B and C span the whole $\text{spin}(9)$

A, B, C can be also used to recover the invariant forms of their corresponding geometries. To this aim, consider the fundamental forms $g \circ J_{\alpha\beta}$, where g is the standard metric in \mathbb{R}^{16}.

Remark 2

The skew-symmetric matrices

$$
\psi_A = (g \circ J_{\alpha\beta})_{J_{\alpha\beta} \in A}, \quad \psi_{A,B} = (g \circ J_{\alpha\beta})_{J_{\alpha\beta} \in A \cup B}, \quad \psi_{A,B,C} = (g \circ J_{\alpha\beta})_{J_{\alpha\beta} \in A \cup B \cup C}
$$

give rise to characteristic polynomials which are invariant under Spin(7)$_\Delta$, Spin(8), Spin(9), respectively. The coefficients τ_i of these polynomials are differential forms of degree $2i$ in \mathbb{R}^{16}, which are by construction invariant for their respective geometries, so that:

- the Spin(7)$_\Delta$-invariant differential form in \mathbb{R}^{16} is $\tau_2(\psi_A) \in \Lambda^4(\mathbb{R}^{16})$
- the Spin(9)-invariant differential form in \mathbb{R}^{16} is $\tau_4(\psi_{A,B,C}) \in \Lambda^8(\mathbb{R}^{16})$
Spin(9) and spheres

The action of \mathbb{C}, \mathbb{H}, \mathbb{O} on \mathbb{R}^{2n}, \mathbb{R}^{4n}, \mathbb{R}^{8n} gives 1, 3, 7 tangent orthonormal vector fields on S^{2n-1}, S^{4n-1}, S^{8n-1}, respectively. In the following, we show how Spin(9) is responsible for the existence of more than 7 vector fields on spheres.

Classical

Maximal number $\sigma(m)$ of linearly independent vector fields on S^{m-1}:

$$\sigma(m) = 8q + 2^p - 1, \text{ where } m = (2k + 1)2^q 16^q \text{ and } 0 \leq p \leq 3.$$

More than 7

<table>
<thead>
<tr>
<th>$m - 1$</th>
<th>15</th>
<th>31</th>
<th>63</th>
<th>127</th>
<th>255</th>
<th>511</th>
<th>1023</th>
<th>2047</th>
<th>4095</th>
<th>65535</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(m)$</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

The lowest dimensional S^{m-1} with $\sigma(m) > 7$ is $S^{15} \subset \mathbb{R}^{16}$, admitting 8 independent vector fields. A family of such 8 vector fields can be written by using J_{19}, \ldots, J_{89} (that is, by the discussion in the previous Section, elements of $\text{spin}(9)$ which are not in $\text{spin}(8)$). As a matter of fact, Spin(9) can be used to write down not only the 8 vector fields in S^{15}, but more generally the $8q$ vector fields appearing in $\sigma(m) = 8q + 2^p - 1$.

Spin(9) matters

It is possible to explicitly construct a maximal system of vector fields on any sphere using J_{19}, \ldots, J_{89} and the mentioned \mathbb{C}, \mathbb{H}, \mathbb{O} actions.

We summarize this construction. In the Table, C_t and C are conjugation-like operators (their definition is omitted for simplicity), and L_x is the left multiplication for $x \in \mathbb{C}$, \mathbb{H}, \mathbb{O}.

General construction

<table>
<thead>
<tr>
<th>(k, p, q)</th>
<th>Sphere</th>
<th>$\sigma(m)$</th>
<th>Vector fields</th>
<th>Involved structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(k, 0, q)$</td>
<td>$S^{2(2k+1)16^q - 1}$</td>
<td>$8q$</td>
<td>${C_t(J_a)}_{t=1, \ldots, q \atop a=1, \ldots, 8}$</td>
<td>Spin(9)q</td>
</tr>
<tr>
<td>$(k, 1, q)$</td>
<td>$S^{2(2k+1)16^q - 1}$</td>
<td>$8q + 1$</td>
<td>${C_t(J_a)}_{t=1, \ldots, q \atop a=1, \ldots, 8}$</td>
<td>Spin(9)q and \mathbb{C}</td>
</tr>
<tr>
<td>$(k, 2, q)$</td>
<td>$S^{4(2k+1)16^q - 1}$</td>
<td>$8q + 3$</td>
<td>${C_t(J_a)}_{t=1, \ldots, q \atop a=1, \ldots, 8}$, $C(L_i), C(L_j), C(L_k)$</td>
<td>Spin(9)q and \mathbb{H}</td>
</tr>
<tr>
<td>$(k, 3, q)$</td>
<td>$S^{8(2k+1)16^q - 1}$</td>
<td>$8q + 7$</td>
<td>${C_t(J_a)}_{t=1, \ldots, q \atop a=1, \ldots, 8}$, $C(L_i), \ldots, C(L_h)$</td>
<td>Spin(9)q and \mathbb{O}</td>
</tr>
</tbody>
</table>
Parallel Spin(9) metrics are very rigid (only 3 cases can occur). What do metrics which are locally conformal to parallel Spin(9) metrics look like? In the following, we give a classification theorem in the compact case.

Definition

Locally conformally parallel Spin(9) manifold: M^{16} with a Spin(9) $\subset SO(16)$ structure whose induced metric g is locally conformal to metrics with Hol \subset Spin(9).

$\left(M, g \right)$ with a Spin(9)-structure $\\Gamma^{\alpha} \ w.r.t.\ g$$

where g_{α} has holonomy contained in Spin(9)

The local functions f_{α} give a globally defined 1-form df_{α}, whose g-dual B is called the Lee vector field of the locally conformally parallel structure. There is a Riemannian and totally geodesic 8-dimensional foliation F on M spanned by B and $\{I_1 B, \ldots, I_9 B\}^\perp$.

Prototype

$S^{15} \times S^1$ is the prototype of locally conformally parallel Spin(9) manifolds. It fibers over S^8 by the octonionic Hopf fibration $S^{15} \times S^1 \to S^8$.

Local model

1. Any locally conformally parallel Spin(9) manifold M is locally isometric to $S^{15} \times S^1$.
2. M fibers over an orbifold O^8 finitely covered by S^8 and all fibers are finitely covered by $S^7 \times S^1$.

Structure Theorem

M is locally conformally parallel Spin(9) if and only if the following holds:

- there is a Riemannian submersion $M \xrightarrow{\pi} S^1$
- the fibers of π are isometric to a 15-dimensional spherical space form S^{15}/K, where $K \subset$ Spin(9)
- the structure group of π is contained in the normalizer $N_{\text{Spin}(9)}(K)$ of K in Spin(9)
The Cayley projective plane $\mathbb{O}P^2$ usually appears as a final possibility for linear projective geometry after the three infinite series $\mathbb{R}P^n$, $\mathbb{C}P^n$, $\mathbb{H}P^n$. As a Riemannian manifold, one has $\mathbb{O}P^2 = F_4/\text{Spin}(9)$, and this leads to other “projective planes”.

The symmetric spaces $E_{\text{III}} = E_6/(\text{Spin}(10)\cdot\text{U}(1))$, $E_{\text{VI}} = E_7/(\text{Spin}(12)\cdot\text{Sp}(1))$, $E_{\text{VIII}} = E_8/\text{Spin}(16)$ are referred to as the Rosenfeld projective planes over $\mathbb{C} \otimes \mathbb{O}$, $\mathbb{H} \otimes \mathbb{O}$, $\mathbb{O} \otimes \mathbb{O}$.

The real cohomology of the first two is known.

\[H^*(E_{\text{III}}) = \mathbb{R}[t, w]/(\rho_1, \rho_2), \quad t \in H^2, w \in H^8 \]
\[H^*(E_{\text{VI}}) = \mathbb{R}[s, w, u]/(\sigma_1, \sigma_2, \sigma_3), \quad s \in H^4, w \in H^8, u \in H^{12} \]
for suitable relations $\rho_1, \rho_2, \sigma_1, \sigma_2, \sigma_3$.

Since E_{III} is Kähler and E_{VI} is quaternion-Kähler (a Wolf space), $t \in H^2$ and $s \in H^4$ can be represented by the Kähler 2-form of E_{III} and the quaternion-Kähler 4-form of E_{VI}. In order to find representatives for w and u, we need to answer the following question.

Question

Is it possible to find families $D \subset \text{spin}(10)$ and $E \subset \text{spin}(12)$ such that Remark 1 at Page 3 is extended?

- family A spans the diagonal $\text{spin}(7)_{\Delta} \subset \text{spin}(9)$
- families A, B span $\text{spin}(8) \subset \text{spin}(9)$
- families A, B and C span $\text{spin}(9)$
- families A, B, C and D span $\text{spin}(10)$
- families A, B, C, D and E span $\text{spin}(12)$

The case spin(10)

Following [Bry99] consider $J_0 : \mathbb{C}^{16} \to \mathbb{C}^{16}$ defined by

\[J_0 = \begin{pmatrix} \frac{i \cdot \text{Id}_8}{0} & 0 \\ 0 & \frac{-i \cdot \text{Id}_8}{0} \end{pmatrix}. \]

Then:

- $D = \{ J_0, [J_0, J_{\alpha}] \}_{1 \leq \alpha \leq 8}$
- the invariant forms on E_{III} are the Kähler form and the Spin(10)-invariant 8-form in \mathbb{R}^{32} given by $\tau_4(\psi_{A,B,C,D})$
We hope that a similar description can be given for the quaternion-Kähler Wolf space E_{VI}, so that its Spin(12)-invariant forms in \mathbb{R}^{64} are given by the quaternion-Kähler 4-form, $\tau_4(\psi_{A,B,C,D,E})$ and $\tau_6(\psi_{A,B,C,D,E})$.

Hopefully

All of this should fit in the framework of Clifford structures as described in [MS11].

The procedure

\[
\begin{align*}
A & \rightsquigarrow A, B \\
& \rightsquigarrow A, B, C \\
& \rightsquigarrow A, B, C, D \\
& \rightsquigarrow A, B, C, D, E
\end{align*}
\]

\[
\Phi_{\text{Spin}(7)} \rightsquigarrow \Phi_{\text{Spin}(8)} \rightsquigarrow \Phi_{\text{Spin}(9)} \rightsquigarrow \Phi_{\text{Spin}(10)} \rightsquigarrow \Phi_{\text{Spin}(12)}
\]

appears as a variation of the “Matryoshka construction” of differential forms described in [DNW10].

Final remarks

- All of this should fit in the framework of Clifford structures as described in [MS11].
- The procedure

\[
\begin{align*}
A & \rightsquigarrow A, B \\
& \rightsquigarrow A, B, C \\
& \rightsquigarrow A, B, C, D \\
& \rightsquigarrow A, B, C, D, E
\end{align*}
\]

\[
\Phi_{\text{Spin}(7)} \rightsquigarrow \Phi_{\text{Spin}(8)} \rightsquigarrow \Phi_{\text{Spin}(9)} \rightsquigarrow \Phi_{\text{Spin}(10)} \rightsquigarrow \Phi_{\text{Spin}(12)}
\]

appears as a variation of the “Matryoshka construction” of differential forms described in [DNW10].

References

[Bae] J. C. Baez. This Week’s Finds in Mathematical Physics. Weeks 64 and 106.

